THE LOCAL H i MASS FUNCTION

نویسنده

  • Martin Zwaan
چکیده

The local H i mass function (HiMF), like the optical luminosity function, is an important observational input into models of cosmology and galaxy evolution. It is a helpful framework for assessing the number density of gas rich dwarf galaxies, which are easily missed in optically selected galaxy samples, as well as for determining the cosmological density of neutral gas at the present epoch. For H i masses larger than 108 M⊙ the HiMF is determined with reasonable accuracy and the same function is obtained from both optical and H i selected samples of galaxies. However, the faint tail below MHI < 10 7 M⊙ is still ill-constrained and leaves room for a population of gas rich dwarfs or free floating H i clouds which hypothetically could contribute significantly to the local gas density. Determining the faint tail far below H i masses of 107 M⊙ will be a great challenge for the future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Heat Transfer Coefficients in a Rectangular Duct with Plate Blockages of Variable Stream Wise Spacing

An experimental investigation is conducted to determine the effect of repeated-plate blockages of variable streamwise spacing on heat transfer characteristics of turbulent flow in rectangular ducts. The plates are attached to the upper and lower walls in a staggered arrangement. The experiments are carried out by mass transfer and the analogy between heat and mass transfer provides the necessar...

متن کامل

A class of Artinian local rings of homogeneous type

‎Let $I$ be an ideal in a regular local ring $(R,n)$‎, ‎we will find‎ ‎bounds on the first and the last Betti numbers of‎ ‎$(A,m)=(R/I,n/I)$‎. ‎if $A$ is an Artinian ring of the embedding‎ ‎codimension $h$‎, ‎$I$ has the initial degree $t$ and $mu(m^t)=1$‎, ‎we call $A$ a {it $t-$extended stretched local ring}‎. ‎This class of‎ ‎local rings is a natural generalization of the class of stretched ...

متن کامل

On natural homomorphisms of local cohomology modules

‎Let $M$ be a non-zero finitely generated module over a commutative Noetherian local ring $(R,mathfrak{m})$ with $dim_R(M)=t$‎. ‎Let $I$ be an ideal of $R$ with $grade(I,M)=c$‎. ‎In this article we will investigate several natural homomorphisms of local cohomology modules‎. ‎The main purpose of this article is to investigate when the natural homomorphisms $gamma‎: ‎Tor^{R}_c(k,H^c_I(M))to kotim...

متن کامل

محاسبه سطح مقطع جزیی انتقال حالت به حالت بار به روش فادیف

  A second-order approximation to the Faddeev-Watson-Lovelace treatment of the rearrangement channel is used in a three-body scattering cross sections. In this formalism, the Three-body wave function is expressed by three coupled integral equations, the Faddeev equations, which contian the two-body (off-shell) transition amplitudes, and proved the uniqueness of their solutions. This amplitude c...

متن کامل

On the Associated Primes of the generalized $d$-Local Cohomology Modules

The first part of the paper is concerned to relationship between the sets of associated primes of the generalized $d$-local cohomology modules and the ordinary  generalized local cohomology  modules.  Assume that $R$ is a commutative Noetherian local ring, $M$ and $N$  are  finitely generated  $R$-modules and $d, t$ are two integers. We prove that $Ass H^t_d(M,N)=bigcup_{Iin Phi} Ass H^t_I(M,N)...

متن کامل

ON GRADED LOCAL COHOMOLOGY MODULES DEFINED BY A PAIR OF IDEALS

Let $R = bigoplus_{n in mathbb{N}_{0}} R_{n}$ be a standardgraded ring, $M$ be a finitely generated graded $R$-module and $J$be a homogenous ideal of $R$. In this paper we study the gradedstructure of the $i$-th local cohomology module of $M$ defined by apair of ideals $(R_{+},J)$, i.e. $H^{i}_{R_{+},J}(M)$. Moreprecisely, we discuss finiteness property and vanishing of thegraded components $H^...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998